Find The Derivative Y = In (Tan X + Sec X)
Find the derivative y = In (tan x + sec x)
y = ln (tan x + sec x)
dy/dx (ln x) = 1/x dx
dy/dx (tan x) = sec^2 x dx
dy/dx (sec x) = sec x tan x dx
d/dx (u/v) = (vdu - udv) / (v^2)
y = 1/(tan x + sec x)
y = (tanx + sec x) - (sec^2 x + secx tanx) / (tanx + sec x)^2
y = (tanx + secx - sec^2x - secxtanx) / (tan^2x + 2tanxsecx + sec^2)
Inform me if I made a mistake.
Comments
Post a Comment